YEAR 9 NUMERACY REVISION NOTES

SOME NUMERICAL FACTS

10mm 100cm 1000m	= = =	1cm 1m 1km	1000ml 1000cm ³	= =	1 1	1000mg 1000g 1000kg	= = =	1g 1kg 1tonne
60secs 60mins 3600secs	= =	1min 1hr 1hr	1inch 5miles 2.2pounds 1 ¾ pints	= = =	2.5cm 8km 1kg 1litre	One million	= 1,000 (6 ze	

SQUARE NUMBERS AND SQUARE ROOTS

 $1^{2} = 1 \times 1 = 1$ $2^{2} = 2 \times 2 = 4$ $5^{2} = 5 \times 5 = 25$

 $\sqrt{25} = 5$ (the square root of 25 = 5 because 5 x 5 = 25

CUBE NUMBERS AND CUBE ROOTS

 $1^{3} = 1x1x1 = 1$ $2^{3} = 2x2x2 = 8$ $5^{3} = 5x5x5 = 125$

 $\sqrt[3]{125} = 5$ (the cube root of 125 = 5 because 5x5x5 =125)

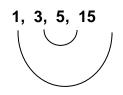
RECIPROCAL

The reciprocal of $\frac{3}{2} = \frac{2}{3}$ Turn fraction upside down 5 can be written as $\frac{5}{1}$ first then turn upside down

BASIC DEFINITIONS

SUM (add -) DIFFERENCE (subtract -) PRODUCT (multiply x)

MULTIPLES

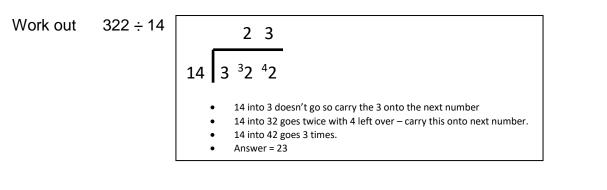

Multiples of 5 for example are the numbers in the 5 times table

e.g. 5, 10, 15, 20, 25,

FACTORS

Factors of a number go into it exactly leaving no remainder

e.g. factors of 15 are:

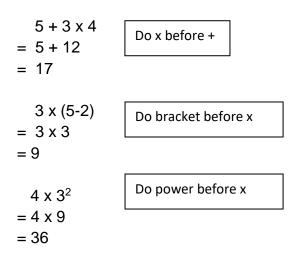

Notice that it is a good idea to list the factors in pairs -e.g.1x15 = 15 & 3x5 = 15

PRIME NUMBERS

2,3,5,7,11,13,17,19,23,29,.....

A prime number has only two factors, 1 and itself

DIVISION



It helps to		
write the 14		
times table!		
1 x 14 = 14		
2 x 14 = 28		
3 x 14 = 42		
4 x 14 = 56		
5 x 14 = 70		
6 x 14 = 84		
7 x 14 = 98		
8 x 14 = 112		
9 x 14 = 126		
10 x 14 =140		

ORDER OF OPERATION

B - bracket

- I indices
- **D** division
- M multiplication
- A addition
- S subtraction

ROUNDING

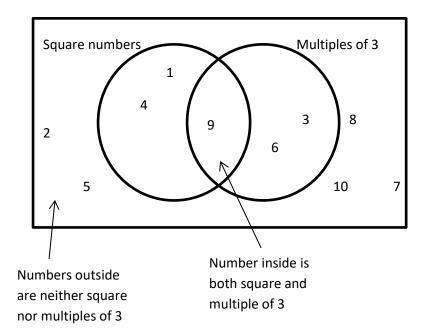
Decimal Places

$$3.78$$
 (1dp) = 3.8
 3.443 (2dp) = 3.44

If the number after the line is 5 or more
 add 1 to the number before the line.

Significant Figures

31 (1sf)	=	30
475 (1sf)	=	480
387 (1sf)	=	400


Estimation

Estimate the sum of £4.99, £6.02, £3.52

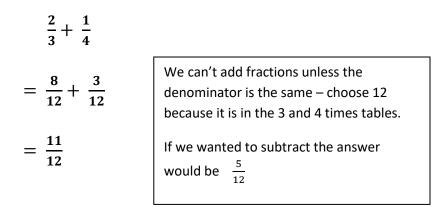
 $\pounds 5 + \pounds 6 + \pounds 3.50 = \pounds 14.50$

VENN DIAGRAMS

Put the numbers 1 -10 into the Venn Diagram

FRACTIONS, DECIMALS AND PERCENTAGES

Simplifying Fractions


Simplify the following:

$\frac{20}{25} = \frac{4}{5} \lt$	Divide top and bottom by 5	>	$\frac{12}{18} =$	$=\frac{2}{3}$
	Divide top and bottom bv 6			

Mixed Numbers and Improper Fractions

 $2\frac{3}{4} = \frac{11}{4}$ $2 \times 4 + 3 = 11$

Adding and Subtracting Fractions

Common Fraction, Decimal and Percentage Equivalents

The following table contains commonly used fraction, decimal and percentage equivalents – they need to be learned.

Fraction	Decimal	Percentage
1/2	0.5	50%
1⁄4	0.25	25%
1/8	0.125	12.5%
3⁄4	0.75	75%
1/3	0. 3	33.3%
2/3	0. Ġ	66. <i>Ġ</i> %
¹ / ₁₀	0.1	10%
1/5	0.2	20%

Fractions of Quantities

Find $\frac{3}{4}$ of 24

= 24 ÷ 4 x 3

Divide by the bottom and **T**imes by the **T**op

= 18

Percentages of Quantities

Examples

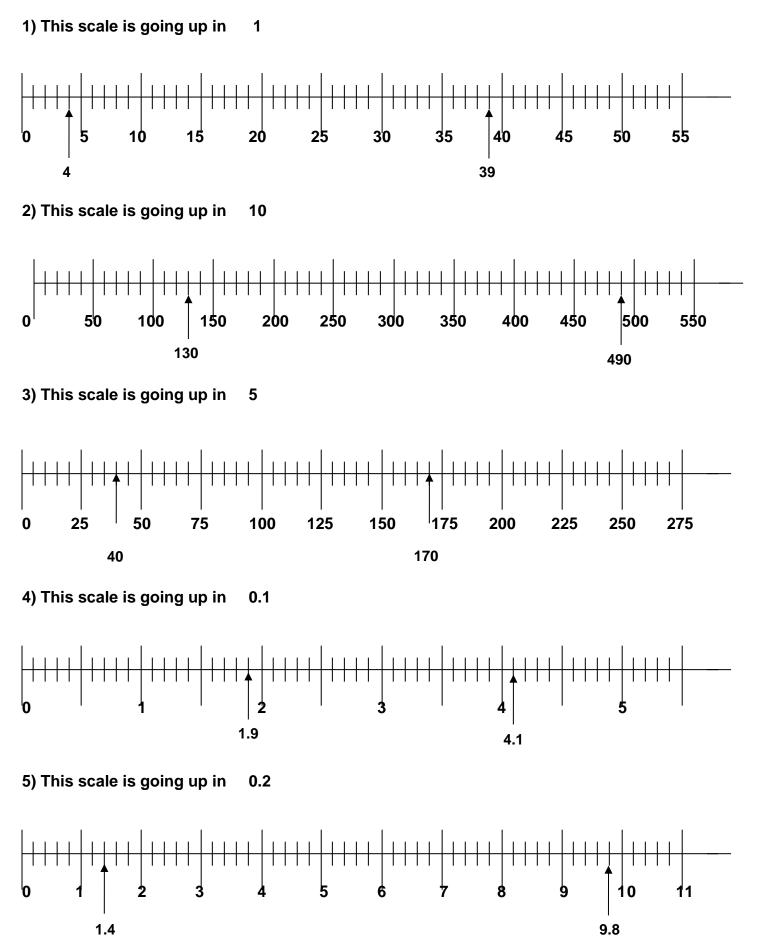
10% of 350 = 35	For 10% ÷ 10,
1% of 350 = 3.5	For 1% ÷ 100
10% of 47 = 4.7	100 1/0 + 100
15% of 420	10% = 42,
	5% = 21
	15% = 42+21 = 63

Increase 320 by 20%	10% = 32]
2		Increase means add on
	20% = 64	decrease means subtract
	320 + 64 = 384	

COMPARING FRACTIONS DECIMALS AND PERCENTAGES

We may be asked to compare using the symbols ">", "<" or "="

2/5 = 40% so 45% is bigger


45% > 2/5

1⁄4 < 0.26

or

1/4 = 25%, 0.26 = 26% so 26% is bigger

READING SCALES

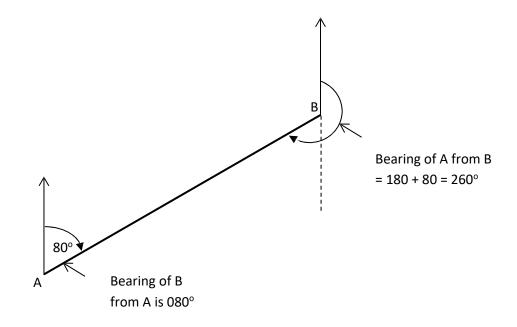
<u>RATIO</u>

Method 1

Ann : Bill
= 2:7
= ?:35
$$\sqrt[X 5]{7 \times 5 = 35 \text{ so } 2 \times 5 = 10}$$

So Ann has 10 pencils

Method 2


Ann and Bill share pencils in the ratio 2:7. If Bill has 35 pencils, how many does Ann have?

7 parts = 35
1 part = 5 (35÷7)
2 parts = 10
Ann has 10 pencils

BEARINGS

A bearing of one point from another is the **angle from north** you have to turn in a **clockwise direction** from the first point to face the second point.

Bearings have to have three figures so for example a bearing of 87⁰ needs to be written as **087⁰**

COMPOUND MEASURES

Speed – Distance - Time

SPEED = DISTANCE

TIME

D

Т

S


It is worth remembering

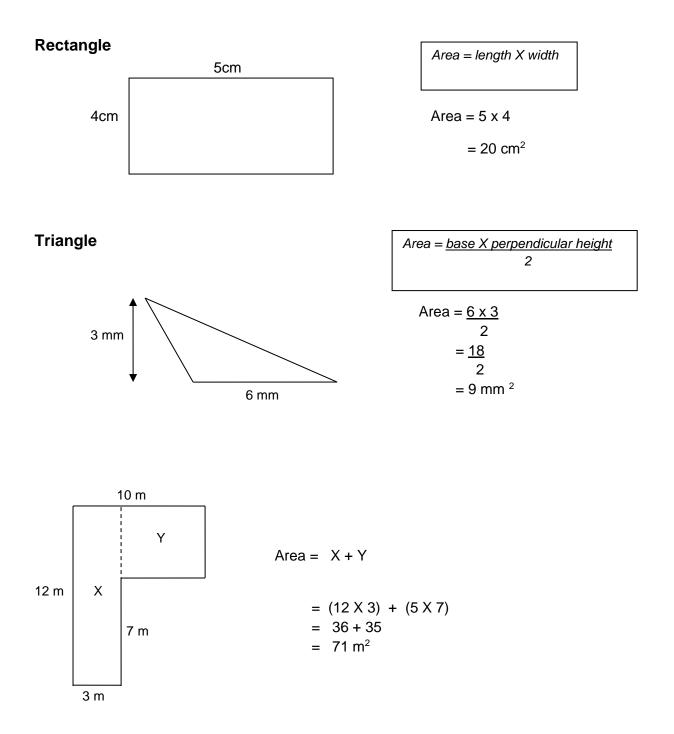
and use the "cover up" method.

COVER "D", D = SxT COVER "S", S = \underline{D} T COVER "T", T = \underline{D} S

Examples

1. A car travels at 30mph for 2hrs 30 mins – how far does it travel?

2. An ant travels 150 metres in 1.5 mins. What is its speed in metres per minute?


Speed = $\frac{\text{Distance}}{\text{Time}}$ = $\frac{150}{1.5}$ = 100 metres / min

<u>AREA</u>

The **AREA** of a shape is the amount of space taken up inside the shape.

Note: The units of the answer will be squared. e.g. $cm^2 mm^2$ etc

Examples

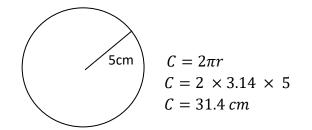
CIRCUMFERENCE & AREA OF CIRCLES

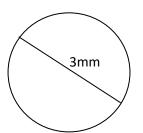
FOR ANY CIRCLE, the circumference is equal to just over 3 times the length of its diameter.

This value is called "Pi" (Greek symbol π) where $\pi = 3.14$ (159265358979323846..)

For the purposes of examinations, we usually use ...

$$\pi = 3.14$$

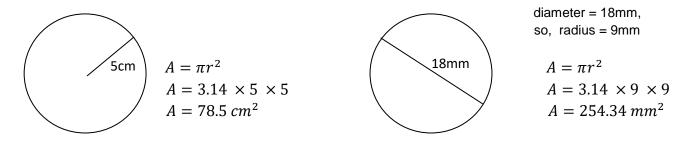

Circumference


$$C=2\pi r$$

Some people prefer to use $C = \pi d$ but the following examples show use of $C = 2\pi r$.

Examples

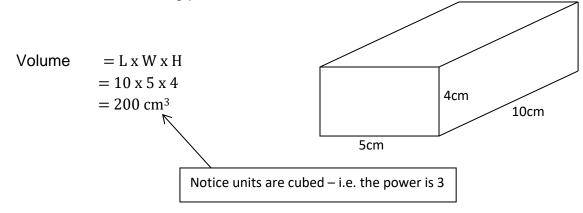
Find the circumference of the following circles


diameter = 3mm, so, radius = 1.5mm

 $C = 2\pi r$ $C = 2 \times 3.14 \times 1.5$ C = 9.42 cm

<u>Area</u>

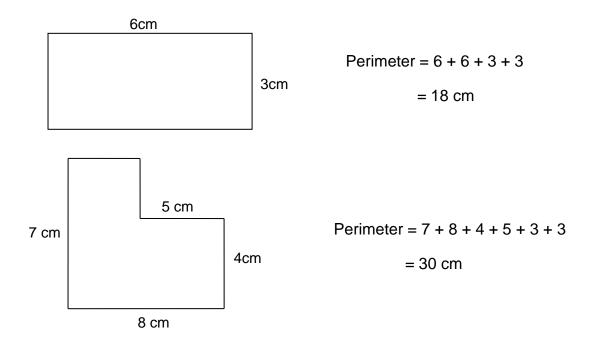
$$A = \pi r^2$$


Find the area of the following circles

VOLUME

Example

Find the volume of the following prism:



PERIMETER

The **PERIMETER** of a shape is the total distance around its edge.

Note: The units of the answer will be the same as the ones used for each of the edges.

Examples

MEAN, MEDIAN, MODE AND RANGE

<u>MODE</u>

The mode is the number that occurs the MOST often in a list.

2, <u>3</u>, 5, 6, 2, <u>3</u>, 7, 8, 6, <u>3</u> The mode is 3

MEDIAN

The median is the middle number in a list of numbers that has been put in order from the smallest to the biggest. Sometimes there will be two middle numbers (if we have an even amount in the list). If this happens we have to find the mean of the two middle ones (add the middle ones up and divide by 2).

1)	2, 7, 8, 3, 4, 6, 3	Put them in orde	er first
	2, 3, 34, 6, 7, 8	The median is 4	
2)	5, 7, 3, 2, 5, 9, 10, 15		
	In order,	40	40 0 0
	2, 3, 5, 5, 7 9, 10, 15 The median = 6	5 + 7 = 12,	$12 \div 2 = 6$
	The median = 6		

<u>MEAN</u>

To find the mean from a list of numbers we need to add them up to get a total and then divide the total by how many numbers in the list.

If we have	12, 6, 17, 5, 10	
Total = 12+6+17	+5+10	Mean = 50 ÷ 5
= 50		= 10

RANGE

To find the range of a list of numbers, we take the smallest from the biggest.

3, 14, 21, 2, 6, 73	Range = $73 - 2$
	= 71